LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034							
M.Sc. DEGREE EXAMINATION – MATHEMATICS							
S.	THIRD SEME	THIRD SEMESTER – NOVEMBER 2018					
16/17PMT3ES02 - DIFF		302 – DIFFERENTIAL GEO	METRY				
	Date: 02-11-2018 Dept. No. Time: 09:00-12:00		Max. : 100 Marks				
Answer all the questions							
1.	(a) Prove that the curvature is the rate of char	ige of the angle of contingency	y with respect to the arc length. (5)				
	(b) Obtain the equation of the tangent $f_1(x, y, z) = 0$ and $f_2(x, y, z) = 0$.	(OR) at a point on the curve	of intersection of two surfaces (5)				
	(c) Define an osculating plane and derive curve.	the equation of the osculati	ng plane at the point on the space (15)				
(OR) (d) (i) Show that the tangent at the point of the curve of intersection of the ellipsoid and the conference of the parameter λ is given by $\frac{x(X-x)}{a^2(b^2-c^2)(a^2-\lambda)} = \frac{y(Y-y)}{b^2(c^2-a^2)(b^2-\lambda)} = \frac{z(Z-z)}{c^2(a^2-b^2)(c^2-\lambda)}$.							
					(ii) Show that the ratio of the arc and the unity when Q approaches P .	chord connecting two point	ts P and Q on a curve approaches $(10+5)$
				2.	(a) Find the plane that has three point of contact at origin with the curve $x = u^4 - 1$, $y = u^3 - 1$, $z = \frac{1}{2}$		
	u = 1.	(OR)	(3)				
	(b) Prove that the necessary and sufficient curvature to the torsion is a constant.	condition that a curve be of	f constant slope is that the ratio of (5)				
	(c) State and prove fundamental theorem of	space curves.	(15)				
(OR)							
	(d) If the general equation of Riccati equation $\frac{df}{dt} = \frac{-i\tau}{-ikf} + \frac{i\tau}{f^2}f^2$ is found in the form $f = \frac{cf_1}{dt}$						
where f_1, f_2, f_3, f_4 are functions of s then prove that the curve is given by the equation $x = \int_{a}^{s} \alpha_1$			by the equation $x = \int_{-\infty}^{s} \alpha_1 ds, y =$				
$\int^{s} \alpha_{2} ds, \ z = \int^{s} \alpha_{3} ds$ where $\alpha_{1} = \frac{f_{1}^{2} - f_{2}^{2} - f_{3}}{2(f_{1}, f_{2})^{2}}$		$\frac{f_3^2 + f_4^2}{-f_2 + f_2}$,					
	$\alpha_2 = \frac{i(f_1^2 + f_2^2 - f_3^2 - f_4^2)}{2(f_1 - f_1 - f_1)}, \alpha_3 = \frac{f_3 f_4 - f_2 f_1}{f_1 - f_1 - f_1} \text{ has } k(s) \text{ and } \tau(s) \text{ as curvature and torsion.}$						
	$2 \qquad 2(f_1f_4 - f_2f_3) \qquad f_1f_4 - f_2f_3$		(15)				
3.	(a) What are the types of singularities? Explair	ı briefly.	(5)				
		(OR)					
(b) Find the angle between two curves lying on a surface at a point of intersection of two curves.			ection of two curves.				
			(5)				

(c) Explain the first fundamental form of a surface and give its geome (1	trical interpretation. .5)			
(OR) (d) Derive the equation of polar and tangential developables associated with a surface.				
	(15)			
4. (a) With usual notations, prove that the necessary and sufficient be a parametric curve is that $f = 0$ and $F = 0$. (OR)	condition that the lines of curvature may (5)			
(b) Find the principal curvature and principal direction at any po	int on a surface			
x = a(u+v), y = a(u-v), z = uv.	(5)			
(c) (i) Find the first fundamental form and the second fundamental form of the curve $x = a \cos x$ $y = a \sin\theta \sin \varphi$, $z = a \cos \varphi$.				
(ii) State and prove Meusnier's theorem.	(10+5)			
(OR)				
(d) Derive the equation satisfying principal curvature at a point direction at a point.	on a surface and the equation of principal (15)			
5 (a) Derive Weingarton equation	(5)			
(OR)				
(b) Derive the Christoffel's symbol of second kind.	(5)			
(c) Derive Mainardi Codazzi equation. (OR)	(15)			
(d) State the fundamental theorem of Surface Theory and demons	trate it in the case of unit sphere. (15)			
